Erzeugung von Sekundärnickel aus NiMH-Batterien

Hochwertiges Recycling von Nickelmetallhydrid (NiMH)-Batterien durch Einsatz von KI-gestützter Röntgentechnologie zur Gewinnung von hochreinem Sekundärnickel

Geplante
Umweltentlastung
Einsparung von CO₂-Emissionen
Einsparung von CO₂-Emissionen
Material
Material
Rückgewinnung von Nickel-Konzentrat
Branche
Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen
Umweltbereich
Ressourcen
Fördernehmer
Saubermacher Recycling GmbH
Bundesland
Hessen
Laufzeit
seit 2025
Status
Laufend
Geplante
Umweltentlastung
Einsparung von CO₂-Emissionen
Einsparung von CO₂-Emissionen
Material
Material
Rückgewinnung von Nickel-Konzentrat

Kurzbeschreibung

Die Saubermacher Recycling GmbH, ein Joint Venture von Saubermacher und der Meinhardt Städtereinigung GmbH & Co. KG, mit Sitz in Hofheim am Taunus ist ein Abfallwirtschaftsunternehmen, das sich mit der Sortierung, dem Recycling und der Verwertung von Altbatterien (Haushalts-, Geräte- und Industriebatterien) beschäftigt. Jährlich werden etwa 1 Milliarde Batterien behandelt. Angeliefert werden Batteriegemische, die alle gängigen Größen von Batterien in unterschiedlicher chemischer Zusammensetzung enthalten. Um die Batterien einem Recycling zuführen zu können, müssen sie möglichst sortenrein nach chemischen Batteriesystemen getrennt werden. Die Qualität der aus Altbatterien gewonnenen Sekundärrohstoffe und deren Kosten hängen direkt von der Qualität der vorangegangenen Sortierung ab.

Die Saubermacher Recycling GmbH plant in Ginsheim-Gustavsburg die Errichtung einer innovativen Anlage zur energieeffizienten Sortierung und Aufbereitung von Nickelmetallhydrid (NiMH)-Batterien. Aus den NiMH-Batterien soll hochreines Sekundärnickel zurückgewonnen werden, das in der Edelstahlindustrie Einsatz finden kann. Nach aktuellem Stand der Technik kann, bedingt durch Fehlsortierung, aus NiMH-Batterien eine Nickel-Fraktion mit einer Cadmium Verunreinigung von bis zu 0,5 Prozent hergestellt werden. Für eine Verwertung in der Edelstahlproduktion und aufgrund von betriebstechnischen Vorgaben für die Stahlwerke darf die Cadmium-Verunreinigung jedoch nicht mehr als 0,2 Prozent betragen – bereits wenige falsch sortierte, cadmiumhaltige Batterien können den avisierten hochwertigen Recyclingpfad in der Edelstahlproduktion unbrauchbar machen.

Nach einer Vorbereitung mit Siebtechnologien zur Abtrennung von Stör- und Füllstoffen und einer Sortierung nach Baugröße werden die gesammelten Altbatteriegemische automatisiert und mithilfe einer KI-gestützten Röntgensortierung untergliedert und nach chemischen Batteriesystemen und Baugrößen sortenrein sortiert. Cadmiumhaltige Batterien sowie andere Batterie-Systeme (Blei (Pb), Lithium-Ionen (Li-Ion), Knopfzellen, etc.) werden einem extra Verwertungsweg in externen Anlagen zugeführt. Die KI-Röntgensortierung soll sicherstellen, dass NiMH-Altbatterien (nahezu) frei von Störstoffen, insbesondere frei von Nickel-Cadmium (NiCd)- bzw. Cadmium-Altbatterien sind. Bestehende Röntgentechnologien waren bislang nur auf die Detektion von AlMn-Batterien ausgerichtet. Die Röntgentechnologie wurde weiterentwickelt, um auch NiMH-Batterien in höchster Qualität aussortieren zu können. Die zuverlässige Erkennung und Ausschleusung von Cadmium aus NiMH/NiCd-Batteriemischungen wurde erprobt und die bestehende Datenbank um spezielle Datensätze erweitert, die zur Cadmium-Detektion notwendig sind. Die Datenbank ist erweiterbar, um eine ständige Aktualisierung und Anpassung der Sortierqualität an neue Batterien und Hersteller zu ermöglichen.

Die im ersten Schritt gewonnene hochreine NiMH-Batteriefraktion wird im zweiten Schritt rein mechanisch zu einem Ni-Konzentrat aufbereitet/ weiterverarbeitet. Dazu werden die Batterien in der geplanten Anlage zerkleinert und Nickeleisen (NiFe)-Schrott von der Schwarzmasse, die das Nickelkonzentrat enthält, getrennt. Die NiFe-Schrott-Fraktion wird separat dem Recyclingpfad (Stahlindustrie) zugeführt. Das Nickelkonzentrat wird anschließend kontrolliert in einem innovativen und überwachten Aggregat verarbeitet. Dieser Schritt muss präzise durchgeführt werden, da sich das Material ohne gezielte Steuerung auf mehr als 600 Grad Celsius erhitzen würde, was nicht nur das Material verkleben lässt, sondern auch ein erhebliches Brandrisiko für die Anlage darstellen würde. Das aus der NiMH-Fraktion gewonnene sehr reine Ni-Konzentrat kann als Sekundärrohstoff und Substitut für Primärnickel in der Edelstahlproduktion (sowie in der Stahlindustrie, z.B. bei hochlegierten Baustählen, Werkzeugstählen sowie im Panzer- und Schiffsbau – worin weitere potenzielle Abnehmer gesehen werden) eingesetzt werden. Gegenüber der Primärnickelproduktion weist das Gemisch mit Sekundärnickel einen deutlich niedrigeren CO2-Ausstoß pro Tonne erzeugtem Edelstahl auf. Bei einem maximalen jährlichen Input von 20.000 Tonnen Batterien wird mit einem Anlagen-Output von rund 2.300 Tonnen Ni-Konzentrat gerechnet. Bei der Herstellung einer Charge Edelstahl unter Verwendung von Primärnickel entsteht eine CO2-Belastung von 7.633 Kilogramm CO2-Äquivalenten. Durch den Einsatz von Nickelkonzentrat kann diese Belastung auf 1.752 Kilogramm CO2-Äquivalente pro Charge reduziert werden. Das Material Nickelkonzentrat weist einen durchschnittlichen Nickelgehalt von rund 45 Masseprozent (M-%) auf und enthält damit etwa das 15-Fache des Nickelgehalts herkömmlicher Ausgangsmaterialien.

Im Rahmen einer Untersuchung zur Bewertung relevanter Wirkungskategorien im Hinblick auf mögliche Umweltbelastungen wurde festgestellt, dass der Aufbereitungsprozess von Nickel-Metallhydrid-Batterien mit anschließender Rückgewinnung von Sekundärnickel im Vergleich zur Herstellung von Primärnickel deutlich besser abschneidet. Besonders in den Kategorien Versauerung, Eutrophierung, Ozonbildung sowie beim Verbrauch fossiler Ressourcen liegen die Umweltwirkungen der Sekundärnickelproduktion lediglich bei rund einem Zehntel der Werte der Primärproduktion. Dies belegt den klaren ökologischen Vorteil von Sekundärnickel. Auch im Hinblick auf die Energieeffizienz zeigt sich ein deutliches Plus: Der Energieverbrauch bei der Rückgewinnung von Sekundärnickel beträgt lediglich etwa fünf Prozent des Energiebedarfs der Primärproduktion. Das neuartige Recyclingverfahren soll zudem zur Reduktion von Staubemissionen sowie Brand- und Explosionsrisiken bei der Aufbereitung von NiMH-Altbatterien, insbesondere durch Kühlung und Verhinderung der Wasserstoff-Bildung in geschlossenen Aggregaten, beitragen und eine staubdichte Verarbeitung zu gewährleisten.

Mithilfe einer KI-gestützten Röntgentechnologie, die auch auf die Detektion weiterer Batterien- und Batteriegemische und ggf. neue chemische Batteriesysteme angepasst werden kann, insbesondere wenn, wie im Projekt vorgesehen, der Algorithmus hinter der KI weiter trainiert wird, wird eine hochmoderne effiziente Sortiertechnologie entwickelt und etabliert, die den Stand der Technik in der Branche verbessern kann. Die Sortiertechnologie lässt sich auf die ganze Branche übertragen.